Методы вычисления определителей. Разложение определителя по строке Вычислить определитель используя разложение по строке

1.Теорема разложения:

Всякий определитель равен сумме парных произведений элементов какого-либо ряда на их алгебраические дополнения.

Для i- й строки:

или для j -го столбца:

Пример 7.1. Вычислить определитель разложением по элементам первой строки:

1∙(1+12+12 ) ∙(2+16+18 )+

3∙(4+8+27 ) ∙(8+4+18 )=

Теорема разложения позволяет заменить вычисление одного определителя n- го порядка вычислением n определителей (n- 1)-го порядка.

Однако для упрощения вычислений целесообразно для определителей высоких порядков использовать метод «размножения нулей», основанный на свойстве 6 раздела 5. Его идея:

Сначала «размножить нули» в некотором ряду, т.е. получить ряд, в котором только один элемент не равен нулю, остальные нули;

Затем разложить определитель по элементам этого ряда.

Следовательно, на основании теоремы разложения исходный определитель равен произведению ненулевого элемента на его алгебраическое дополнение.

Пример7.2. Вычислить определитель:

.

«Размножим нули» в первом столбце.

От второй строки вычтем первую, умноженную на 2, от третьей строки вычтем первую, умноженную на 3, а от четвертой строки вычтем первую, умноженную на 4. При таких преобразованиях величина определителя не изменится.

По свойству 4 раздела 5 можем вынести за знак определителя из 1-го столбца, из 2-го столбца и из 3-го столбца.

Следствие: Определитель с нулевым рядом равен нулю.

2. Теорема замещения:

Сумма парных произведений каких-либо чисел на алгебраические дополнения некоторого ряда определителя равна тому определителю, который получается из данного, если в нем заменить элементы этого ряда взятыми числами.

Для -й строки:

1. Теорема аннулирования:

Сумма парных произведений элементов какого-либо ряда на алгебраические дополнения параллельного ряда равна нулю.

Действительно, по теореме замещения получаем определитель, у которого в k -й строке стоят те же элементы, что и в i -й строке

Но по свойству 3 раздела 5 такой определитель равен нулю.

Т.о., теорему разложения и ее следствия можно записать следующим образом:

8. Общие сведения о матрицах. Основные определения.

Определение 8.1 . Матрицей называется следующая прямоугольная таблица:

Применяют также следующие обозначения матрицы: , или , или .

Строки и столбцы матрицы именуются рядами.

Величина называется размером матрицы.

Если в матрице поменять местами строки и столбцы, то получим матрицу, называемую транспонированной . Матрица, транспонированнаяс , обычно обозначается символом .

Например:

Определение 8.2 . Две матрицы A и B называются равными , если

1) обе матрицы одинаковых размеров, т.е. и ;

2) все их соответствующие элементы равны, т.е.

Тогда . (8.2)

Здесь одно матричное равенство (8.2) эквивалентно скалярных равенств (8.1).

9. Разновидности матриц.

1) Матрица, все элементы которой равны нулю, называется ноль-матрицей:

2) Если матрица состоит только из одной строки, то она называется матрицей-строкой, например . Аналогично этому матрица, имеющая только один столбец, именуется матрицей-столб­цом, например .

Транспонирование переводит матрицу-столбец в матрицу-строку и наоборот.

3) Если m = n , то матрица называется квадрат­ной матрицей n-го порядка.

Диагональ членов квадратной матрицы, идущая из левого верхнего угла в ее правый нижний угол, называется главной . Другая же диагональ ее членов, идущая из левого нижнего угла в ее правый верхний угол, именуется побочной .

Для квадратной матрицы может быть вычислен определитель det(A) .

Равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е. , где i 0 – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i 0 .

Назначение сервиса . Данный сервис предназначен для нахождения определителя матрицы в онлайн режиме с оформлением всего хода решения в формате Word . Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите размерность матрицы, нажмите Далее. Вычислить определитель можно будет двумя способами: по определению и разложением по строке или столбцу . Если требуется найти определитель созданием нулей в одной из строк или столбцов, то можно использовать этот калькулятор .

Алгоритм нахождения определителя

  1. Для матриц порядка n=2 определитель вычисляется по формуле: Δ=a 11 *a 22 -a 12 *a 21
  2. Для матриц порядка n=3 определитель вычисляется через алгебраические дополнения или методом Саррюса .
  3. Матрица, имеющая размерность больше трех, раскладывается на алгебраические дополнения, для которых вычисляются свои определители (миноры). Например, определитель матрицы 4 порядка находится через разложение по строкам или столбцам (см. пример).
Для вычисления определителя, содержащего в матрице функции, применяются стандартные методы. Например, вычислить определитель матрицы 3 порядка:

Используем прием разложения по первой строке.
Δ = sin(x)× + 1× = 2sin(x)cos(x)-2cos(x) = sin(2x)-2cos(x)

Методы вычислений определителей

Нахождение определителя через алгебраические дополнения является распространенным методом. Его упрощенным вариантом является вычисление определителя правилом Саррюса . Однако при большой размерности матрицы, используют следующие методы:
  1. вычисление определителя методом понижения порядка
  2. вычисление определителя методом Гаусса (через приведение матрицы к треугольному виду).
В Excel для расчета определителя используется функция =МОПРЕД(диапазон ячеек) .

Прикладное использование определителей

Вычисляют определители, как правило, для конкретной системы, заданной в виде квадратной матрицы. Рассмотрим некоторые виды задач на нахождение определителя матрицы . Иногда требуется найти неизвестный параметр a , при котором определитель равнялся бы нулю. Для этого необходимо составить уравнение определителя (например, по правилу треугольников ) и, приравняв его к 0 , вычислить параметр a .
разложение по столбцам (по первому столбцу):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.
Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 .

Определим минор для (2,1): для этого вычеркиваем из матрицы вторую строку и первый столбец.

Найдем определитель для этого минора. ∆ 2,1 = (0 (-2)-2 (-2)) = 4 . Минор для (3,1): Вычеркиваем из матрицы 3-ю строку и 1-й столбец.
Найдем определитель для этого минора. ∆ 3,1 = (0 1-2 (-2)) = 4
Главный определитель равен: ∆ = (1 (-6)-3 4+1 4) = -14

Найдем определитель, использовав разложение по строкам (по первой строке):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.


Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 . Минор для (1,2): Вычеркиваем из матрицы 1-ю строку и 2-й столбец. Вычислим определитель для этого минора. ∆ 1,2 = (3 (-2)-1 1) = -7 . И чтобы найти минор для (1,3) вычеркиваем из матрицы первую строку и третий столбец. Найдем определитель для этого минора. ∆ 1,3 = (3 2-1 2) = 4
Находим главный определитель: ∆ = (1 (-6)-0 (-7)+(-2 4)) = -14

Определитель рассчитывается только для квадратных матриц и является сумой слагаемых n-ого порядка. Подробный алгоритм его вычисления будет описан в готовом решении, которое вы сможете получить сразу после ввода условия в данный онлайн калькулятор. Это доступная и простая возможность получить детальную теорию, поскольку решение будет представлено с подробной расшифровкой каждого шага.

Инструкция пользования данным калькулятором проста. Чтобы найти определитель матрицы онлайн сначала вам нужно определиться с размером матрицы и выбрать количество столбцов и, соответственно, строк в ней. Для этого кликните на иконку «+» или «-». Далее остаётся только ввести нужные числа и нажать «Вычислить». Можно вводить как целые, так и дробные числа. Калькулятор сделает всю требуемую работу и выдаст вам готовый результат.

Чтобы стать экспертом в математике, нужно много и упорно тренироваться. A ещё никогда не помешает дополнительный раз себя перепроверить. Поэтому, когда перед вами поставлена задача вычислить определитель матрицы, целесообразно воспользоваться онлайн калькулятором. Он справится очень быстро, и в течение нескольких секунд на мониторе появится, готовое решение. Это не предполагает, что онлайн калькулятор должен заменять вам традиционные расчёты. Но он является превосходным помощником, если вам интересно понять алгоритм вычисления определителя матрицы. K тому же, это превосходная возможность проверить, правильно ли выполнена контрольная, подстраховаться от неудачной оценки.

В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали :

$$\left| \begin{array}{ll}{a_{11}} & {a_{12}} \\ {a_{21}} & {a_{22}}\end{array}\right|=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}$$

Пример

Задание. Вычислить определитель второго порядка $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|$

Решение. $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|=11 \cdot 5-(-2) \cdot 7=55+14=69$

Ответ. $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

$$\left| \begin{array}{ccc}{a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}}\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$$

$$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$$

Пример

Задание. Вычислить определитель $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|$ методом треугольников.

Решение. $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|=3 \cdot 1 \cdot(-2)+4 \cdot(-2) \cdot(-1)+$

$$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$

Ответ.

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

$$-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$$

Пример

Задание. Вычислить определитель $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|$ с помощью правила Саррюса.

Решение.

$$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$

Ответ. $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|=54$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения . Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|$

Решение. $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right| \leftarrow=a_{11} \cdot A_{11}+a_{12} \cdot A_{12}+a_{13} \cdot A_{13}=$

$1 \cdot(-1)^{1+1} \cdot \left| \begin{array}{cc}{5} & {6} \\ {8} & {9}\end{array}\right|+2 \cdot(-1)^{1+2} \cdot \left| \begin{array}{cc}{4} & {6} \\ {7} & {9}\end{array}\right|+3 \cdot(-1)^{1+3} \cdot \left| \begin{array}{cc}{4} & {5} \\ {7} & {8}\end{array}\right|=-3+12-9=0$

Ответ.

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|$

Решение. Выполним следующие преобразования над строками определителя : из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

$$\left| \begin{array}{ccc}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|=\left| \begin{array}{ccc}{1} & {2} & {3} \\ {4-4 \cdot 1} & {5-4 \cdot 2} & {6-4 \cdot 3} \\ {7-7 \cdot 1} & {8-7 \cdot 2} & {9-7 \cdot 3}\end{array}\right|=$$

$$=\left| \begin{array}{rrr}{1} & {2} & {3} \\ {0} & {-3} & {-6} \\ {0} & {-6} & {-12}\end{array}\right|=\left| \begin{array}{ccc}{1} & {2} & {3} \\ {0} & {-3} & {-6} \\ {0} & {2 \cdot(-3)} & {2 \cdot(-6)}\end{array}\right|=0$$

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ. $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|=0$

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель $\left| \begin{array}{llll}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя , сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

$$\left| \begin{array}{cccc}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|=\left| \begin{array}{cccc}{9-1} & {8-0} & {7-9} & {6-18} \\ {5-5} & {4-0} & {3-5} & {2-10} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|=\left| \begin{array}{rrrr}{0} & {8} & {-2} & {-12} \\ {0} & {4} & {-2} & {-8} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|$$

Полученный определитель разложим по элементам первого столбца:

$$\left| \begin{array}{rrrr}{0} & {8} & {-2} & {-12} \\ {0} & {4} & {-2} & {-8} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|=0+0+1 \cdot(-1)^{3+1} \cdot \left| \begin{array}{rrr}{8} & {-2} & {-12} \\ {4} & {-2} & {-8} \\ {4} & {2} & {0}\end{array}\right|+0$$

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

$$\left| \begin{array}{rrr}{8} & {-2} & {-12} \\ {4} & {-2} & {-8} \\ {4} & {2} & {0}\end{array}\right|=\left| \begin{array}{rrr}{0} & {2} & {4} \\ {4} & {-2} & {-8} \\ {0} & {4} & {8}\end{array}\right|=4 \cdot(-1)^{2+2} \cdot \left| \begin{array}{ll}{2} & {4} \\ {4} & {8}\end{array}\right|=$$

$$=4 \cdot(2 \cdot 8-4 \cdot 4)=0$$

Ответ. $\left| \begin{array}{cccc}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|=0$

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя , равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель $\Delta=\left| \begin{array}{rrrr}{-2} & {1} & {3} & {2} \\ {3} & {0} & {-1} & {2} \\ {-5} & {2} & {3} & {0} \\ {4} & {-1} & {2} & {-3}\end{array}\right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_{11}$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

$$\Delta=\left| \begin{array}{rrrr}{-2} & {1} & {3} & {2} \\ {3} & {0} & {-1} & {2} \\ {-5} & {2} & {3} & {0} \\ {4} & {-1} & {2} & {-3}\end{array}\right|=-\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {3} & {-1} & {2} \\ {2} & {-5} & {3} & {0} \\ {-1} & {4} & {2} & {-3}\end{array}\right|$$

$$\Delta=-\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {3} & {-1} & {2} \\ {0} & {-1} & {-3} & {-4} \\ {0} & {2} & {5} & {-1}\end{array}\right|$$

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

$$\Delta=\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {-1} & {-3} & {-4} \\ {0} & {3} & {-1} & {2} \\ {0} & {2} & {5} & {-1}\end{array}\right|$$

Матрицы применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. При этом количество строк матрицы соответствует числу уравнений, а количество столбцов – количеству неизвестных. Как результат – решение систем линейных уравнений сводится к операциям над матрицами.

Матрица записывается в виде прямоугольной таблицы элементов кольца или поля (к примеру, целых, комплексных или действительных чисел). Является совокупностью строк и столбцов, на пересечении которых находятся ее элементы. Размер матрицы задается количеством строк и столбцов.

Важным значением любой матрицы является её определитель, который вычисляется по определённой формуле. Вручную необходимо проделать ряд операций с матрицей, чтобы вычислить её определитель. Определитель может быть как положительным, так отрицательным, так и равен нулю. Чтобы проверить свои вычисления определителя матрицы, Вы можете воспользоваться нашим онлайн калькулятором. Онлайн калькулятор мгновенно посчитает определитель матрицы и выдаст точное значение.

Определитель матрицы – это своеобразная характеристика матрицы, а точнее с помощью него можно определить имеет ли соответствующая система уравнений решение. Определитель матрицы широко используется в науке, такой как физика, с помощью которого вычисляется физический смысл многих величин.

Решение систем линейных алгебраических уравнений

Также с помощью нашего калькулятора вы сможете решить систему линейных алгебраических уравнений (СЛАУ).

Решение систем линейных алгебраических уравнений входит в число обычных задач линейной алгебры. СЛАУ и методы их решения лежат в основе многих прикладных направлений, в том числе в эконометрике и линейном программировании.

Бесплатный онлайн калькулятор

Наш бесплатный решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.