C выделение памяти под строку. Динамическая память. Динамическая память, или куча

Работа с динамической памятью зачастую является узким местом во многих алгоритмах, если не применять специальные ухищрения.

В статье я рассмотрю парочку таких техник. Примеры в статье отличаются (например, от ) тем, что используется перегрузка операторов new и delete и за счёт этого синтаксические конструкции будут минималистичными, а переделка программы - простой. Также описаны подводные камни, найденные в процессе (конечно, гуру, читавшие стандарт от корки до корки, не удивятся).

0. А нужна ли нам ручная работа с памятью?

В первую очередь проверим, насколько умный аллокатор может ускорить работу с памятью.

Напишем простые тесты для C++ и C# (C# известен прекрасным менеджером памяти, который делит объекты по поколениям, использует разные пулы для объектов разных размеров и т.п.).

Class Node { public: Node* next; }; // ... for (int i = 0; i < 10000000; i++) { Node* v = new Node(); }

Class Node { public Node next; } // ... for (int l = 0; l < 10000000; l++) { var v = new Node(); }

Несмотря на всю «сферично-вакуумность» примера, разница по времени получилась в 10 раз (62 ms против 650 ms). Кроме того, c#-пример закончен, а по правилам хорошего тона в c++ выделенные объекты надо удалить, что ещё больше увеличит отрыв (до 2580 ms).

1. Пул объектов

Очевидное решение - забрать у ОС большой блок памяти и разбить его на равные блоки размера sizeof(Node), при выделении памяти брать блок из пула, при освобождении - возвращать в пул. Пул проще всего организовать с помощью односвязного списка (стека).

Поскольку стоит задача минимального вмешательства в программу, всё что можно будет сделать, это добавить примесь BlockAlloc к классу Node:
class Node: public BlockAlloc

Прежде всего нам понадобится пул больших блоков (страниц), которые забираем у ОС или C-runtime. Его можно организовать поверх функций malloc и free, но для большей эффективности (чтобы пропустить лишний уровень абстракции), используем VirtualAlloc/VirtualFree. Эти функции выделяют память блоками, кратными 4K, а также резервируют адресное пространство процесса блоками, кратными 64K. Одновременно указывая опции commit и reserve, мы перескакиваем ещё один уровень абстракции, резервируя адресное пространство и выделяя страницы памяти одним вызовом.

Класс PagePool

inline size_t align(size_t x, size_t a) { return ((x-1) | (a-1)) + 1; } //#define align(x, a) ((((x)-1) | ((a)-1)) + 1) template class PagePool { public: void* GetPage() { void* page = VirtualAlloc(NULL, PageSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); pages.push_back(page); return page; } ~PagePool() { for (vector::iterator i = pages.begin(); i != pages.end(); ++i) { VirtualFree(*i, 0, MEM_RELEASE); } } private: vector pages; };

Затем организуем пул блоков заданного размера

Класс BlockPool

template class BlockPool: PagePool { public: BlockPool() : head(NULL) { BlockSize = align(sizeof(T), Alignment); count = PageSize / BlockSize; } void* AllocBlock() { // todo: lock(this) if (!head) FormatNewPage(); void* tmp = head; head = *(void**)head; return tmp; } void FreeBlock(void* tmp) { // todo: lock(this) *(void**)tmp = head; head = tmp; } private: void* head; size_t BlockSize; size_t count; void FormatNewPage() { void* tmp = GetPage(); head = tmp; for(size_t i = 0; i < count-1; i++) { void* next = (char*)tmp + BlockSize; *(void**)tmp = next; tmp = next; } *(void**)tmp = NULL; } };

Комментарием // todo: lock(this) помечены места, которые требуют межпоточной синхронизации (например, используйте EnterCriticalSection или boost::mutex).

Объясню, почему при «форматировании» страницы не ипользуется абстракция FreeBlock для добавления блока в пул. Если бы было написано что-то вроде

For (size_t i = 0; i < PageSize; i += BlockSize) FreeBlock((char*)tmp+i);

То страница по принципу FIFO оказалась бы размеченной «наоборот»:

Несколько блоков, затребованных из пула подряд, имели бы убывающие адреса. А процессор не любит ходить назад, от этого у него ломается Prefetch (UPD : Не актуально для современных процессоров). Если же делать разметку в цикле
for (size_t i = PageSize-(BlockSize-(PageSize%BlockSize)); i != 0; i -= BlockSize) FreeBlock...
то цикл разметки ходил бы по адресам назад.

Теперь, когда приготовления сделаны, можно описать класс-примесь.
template class BlockAlloc { public: static void* operator new(size_t s) { if (s != sizeof(T)) { return::operator new(s); } return pool.AllocBlock(); } static void operator delete(void* m, size_t s) { if (s != sizeof(T)) { ::operator delete(m); } else if (m != NULL) { pool.... static void* operator new(size_t, void* m) { return m; } // ...and the warning about missing placement delete... static void operator delete(void*, void*) { } private: static BlockPool pool; }; template BlockPool BlockAlloc::pool;

Объясню, зачем нужны проверки if (s != sizeof(T))
Когда они срабатывают? Тогда, когда создаётся/удаляется класс, отнаследованный от базового T.
Наследники будут пользоваться обычными new/delete, но к ним также можно примешать BlockAlloc. Таким образом, мы легко и безопасно определяем, какие классы должны пользоваться пулами, не боясь сломать что-то в программе. Множественное наследование также прекрасно работает с этой примесью.

Готово. Наследуем Node от BlockAlloc и заново проводим тест.
Время теста теперь - 120 ms. В 5 раз быстрее. Но в c# аллокатор всё же лучше. Наверное, там не просто связный список. (Если же сразу после new сразу вызывать delete, и тем самым не тратить много памяти, умещая данные в кеш, получим 62 ms. Странно. В точности, как у.NET CLR, как будто он возвращает освободившиеся локальные переменные сразу в соответствующий пул, не дожидаясь GC)

2. Контейнер и его пёстрое содержимое

Часто ли попадаются классы, которые хранят в себе массу различных дочерних объектов, таких, что время жизни последних не дольше времени жизни родителя?

Например, это может быть класс XmlDocument, наполненный классами Node и Attribute, а также c-строками (char*), взятыми из текста внутри нод. Или список файлов и каталогов в файловом менеджере, загружаемых один раз при перечитывании каталога и больше не меняющихся.

Как было показано во введении, delete обходится дороже, чем new. Идея второй части статьи в том, чтобы память под дочерние объекты выделять в большом блоке, связанном с Parent-объектом. При удалении parent-объекта у дочерних будут, как обычно, вызваны деструкторы, но память возвращать не потребуется - она освободиться одним большим блоком.

Создадим класс PointerBumpAllocator, который умеет откусывать от большого блока куски разных размеров и выделять новый большой блок, когда старый будет исчерпан.

Класс PointerBumpAllocator

template class PointerBumpAllocator { public: PointerBumpAllocator() : free(0) { } void* AllocBlock(size_t block) { // todo: lock(this) block = align(block, Alignment); if (block > free) { free = align(block, PageSize); head = GetPage(free); } void* tmp = head; head = (char*)head + block; free -= block; return tmp; } ~PointerBumpAllocator() { for (vector::iterator i = pages.begin(); i != pages.end(); ++i) { VirtualFree(*i, 0, MEM_RELEASE); } } private: void* GetPage(size_t size) { void* page = VirtualAlloc(NULL, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); pages.push_back(page); return page; } vector pages; void* head; size_t free; }; typedef PointerBumpAllocator<> DefaultAllocator;

Наконец, опишем примесь ChildObject с перегруженными new и delete, обращающимися к заданному аллокатору:

Template struct ChildObject { static void* operator new(size_t s, A& allocator) { return allocator.AllocBlock(s); } static void* operator new(size_t s, A* allocator) { return allocator->AllocBlock(s); } static void operator delete(void*, size_t) { } // *1 static void operator delete(void*, A*) { } static void operator delete(void*, A&) { } private: static void* operator new(size_t s); };

В этом случае кроме добавления примеси в child-класс необходимо будет также исправить все вызовы new (или воспользоваться паттерном «фабрика»). Синтаксис оператора new будет следующим:

New (… параметры для оператора…) ChildObject (… параметры конструктора…)

Для удобства я задал два оператора new, принимающих A& или A*.
Если аллокатор добавлен в parent-класс как член, удобнее первый вариант:
node = new(allocator) XmlNode(nodename);
Если аллокатор добавлен как предок (примесь), удобнее второй:
node = new(this) XmlNode(nodename);

Для вызова delete не предусмотрен специальный синтаксис, компилятор вызовет стандартный delete (отмеченный *1), независимо от того, какой из операторов new был использован для создания объекта. То есть, синтаксис delete обычный:
delete node;

Если же в конструкторе ChildObject (или его наследника) происходит исключение, вызывается delete с сигнатурой, соответствующей сигнатуре оператора new, использованном при создании этого объекта (первый параметр size_t будет заменён на void*).

Размешение оператора new в секции private защищает от вызова new без указания аллокатора.

Приведу законченный пример использования пары Allocator-ChildObject:

Пример

class XmlDocument: public DefaultAllocator { public: ~XmlDocument() { for (vector::iterator i = nodes.begin(); i != nodes.end(); ++i) { delete (*i); } } void AddNode(char* content, char* name) { char* c = (char*)AllocBlock(strlen(content)+1); strcpy(c, content); char* n = (char*)AllocBlock(strlen(name)+1); strcpy(n, content); nodes.push_back(new(this) XmlNode(c, n)); } class XmlNode: public ChildObject { public: XmlNode(char* _content, char* _name) : content(_content), name(_name) { } private: char* content; char* name; }; private: vector nodes; };

Заключение. Статья была написана 1.5 года назад для песочницы, но увы, не понравилась модератору.

Итак. третий тип, самый интересный в этой теме для нас – динамический тип памяти.

Как мы работали с массивами раньше? int a Как мы работаем сейчас? Выделяем столько, сколько нужно:

#include < stdio.h> #include < stdlib.h> int main () { size_t size; // Создаём указатель на int // – по сути, пустой массив. int *list; scanf (" %lu " , &size); // Выделяем память для size элементов размером int // и наш "пустой массив" теперь ссылается на эту память. list = (int *)malloc (size * sizeof (int )); for (int i = 0 ; i < size; ++i) { scanf (" %d " < size; ++i) { printf (" %d " , *(list + i)); } // Не забываем за собой прибраться! free (list); } // *

Void * malloc(size_t size);

Но в общем и целом это функция, выделяет size байт неинициализированной памяти (не нули, а мусор).

Если выделение прошло успешно, то возвращается указатель на самый первый байт выделенной памяти.

Если неуспешно – NULL. Также errno будет равен ENOMEM (эту замечательную переменную мы рассмотрим позднее). То есть правильнее было написать:

#include < stdio.h> #include < stdlib.h> int main () { size_t size; int *list; scanf (" %lu " , &size); list = (int *)malloc (size * sizeof (int )); if (list == NULL ) { goto error; } for (int i = 0 ; i < size; ++i) { scanf (" %d " , list + i); } for (int i = 0 ; i < size; ++i) { printf (" %d " , *(list + i)); } free (list); return 0 ; error: return 1 ; } // *

Очищать NULL указатель не нужно

#include < stdlib.h> int main () { free (NULL ); }

– в том же clang всё пройдёт нормально (сделает ничто), но в более экзотических случаях вполне может крэшнуть программу.

Рядом с malloc и free в мане можно увидеть ещё:

    void * calloc (size_t count, size_t size);

    Равно как и malloc выделит память под count объектов размером по size байт. Выделяемая память инициализируется нулями.

    void * realloc (void *ptr, size_t size);

    Перевыделяет (если может) память, на которую указывает ptr , в размере size байт. Если не хватает места для увеличения выделенной памяти, на которое указывает ptr , realloc создает новое выделение (аллокацию), копирует старые данные, на которые указывает ptr , освобождает старое выделение и возвращает указатель на выделенную память.

    Если ptr равен NULL , realloc идентичен вызову malloc .

    Если size равен нулю, а ptr не NULL , выделяется кусок памяти минимального размера, а исходная освобождается.

    void * reallocf (void *ptr, size_t size);

    Придумка из FreeBSD API. Как и realloc , но если не сможет перевыделить, очищает принятый указатель.

    void * valloc (size_t size);

    Как и malloc , но выделенная память выравнивается по границе страницы.

время выполнения программы. Под локальные переменные программа отводит память из стекового пространства. Однако локальные переменные требуют предварительного определения объема памяти, выделяемой для каждой ситуации. Хотя С++ эффективно реализует такие переменные, они требуют от программиста заранее знать, какое количество памяти необходимо для каждой ситуации.

Второй способ, которым С++ может хранить информацию, заключается в использовании системы динамического распределения. При этом способе память распределяется для информации из свободной области памяти по мере необходимости. Область свободной памяти находится между кодом программы с ее постоянной областью памяти и стеком ( рис. 24.1). Динамическое размещение удобно, когда неизвестно, сколько элементов данных будет обрабатываться.


Рис. 24.1.

По мере использования программой стековая область увеличивается вниз, то есть программа сама определяет объем стековой памяти. Например, программа с большим числом рекурсивных функций займет больше стековой памяти, чем программа , не имеющая рекурсивных функций , так как локальные переменные и возвращаемые адреса хранятся в стеках. Память под саму программу и глобальные переменные выделяется на все время выполнения программы и является постоянной для конкретной среды.

Память , выделяемая в процессе выполнения программы, называется динамической. После выделения динамической памяти она сохраняется до ее явного освобождения, что может быть выполнено только с помощью специальной операции или библиотечной функции.

Если динамическая память не освобождена до окончания программы, то она освобождается автоматически при завершении программы. Тем не менее, явное освобождение ставшей ненужной памяти является признаком хорошего стиля программирования.

В процессе выполнения программы участок динамической памяти доступен везде, где доступен указатель , адресующий этот участок. Таким образом, возможны следующие три варианта работы с динамической памятью , выделяемой в некотором блоке (например, в теле неглавной функции).

  • Указатель (на участок динамической памяти) определен как локальный объект автоматической памяти. В этом случае выделенная память будет недоступна при выходе за пределы блока локализации указателя, и ее нужно освободить перед выходом из блока.
  • Указатель определен как локальный объект статической памяти. Динамическая память, выделенная однократно в блоке, доступна через указатель при каждом повторном входе в блок. Память нужно освободить только по окончании ее использования.
  • Указатель является глобальным объектом по отношению к блоку. Динамическая память доступна во всех блоках, где "виден" указатель. Память нужно освободить только по окончании ее использования.

Все переменные, объявленные в программе размещаются в одной непрерывной области памяти, которую называют сегментом данных . Такие переменные не меняют своего размера в ходе выполнения программы и называются статическими . Размера сегмента данных может быть недостаточно для размещения больших объемов информации. Выходом из этой ситуации является использование динамической памяти. Динамическая память – это память , выделяемая программе для ее работы за вычетом сегмента данных, стека, в котором размещаются локальные переменные подпрограмм и собственно тела программы.

Для работы с динамической памятью используют указатели. С их помощью осуществляется доступ к участкам динамической памяти, которые называются динамическими переменными . Для хранения динамических переменных выделяется специальная область памяти, называемая " кучей ".

Динамические переменные создаются с помощью специальных функций и операций. Они существуют либо до конца работы программы, либо до тех пор, пока не будет освобождена выделенная под них память с помощью специальных функций или операций. То есть время жизни динамических переменных – от точки создания до конца программы или до явного освобождения памяти .

В С++ используется два способа работы с динамической памятью:

  1. использование операций new и delete ;
  2. использование семейства функций mallос (calloc ) (унаследовано из С).

Работа с динамической памятью с помощью операций new и delete

В языке программирования С++ для динамического распределения памяти существуют операции new и delete . Эти операции используются для выделения и освобождения блоков памяти . Область памяти, в которой размещаются эти блоки, называется свободной памятью .

Операция new позволяет выделить и сделать доступным свободный участок в основной памяти, размеры которого соответствуют типу данных, определяемому именем типа.

Синтаксис :

new ИмяТипа;

new ИмяТипа [Инициализатор];

В выделенный участок заносится значение , определяемое инициализатором , который не является обязательным элементом. В случае успешного выполнения new возвращает адрес начала выделенного участка памяти. Если участок нужных размеров не может быть выделен (нет памяти), то операция new возвращает нулевое значение адреса (NULL ).

Синтаксис применения операции :

Указатель = new ИмяТипа [Инициализатор];

Операция new float выделяет участок памяти размером 4 байта. Операция new int(15) выделяет участок памяти 4 байта и инициализирует этот участок целым значением 15. Синтаксис использования операций new и delete предполагает применение указателей. Предварительно каждый указатель должен быть объявлен:

тип *ИмяУказателя;

Например:

float *pi; //Объявление переменной pi pi=new float; //Выделение памяти для переменной pi * pi = 2.25; //Присваивание значения

В качестве типа можно использовать, например, стандартные типы int, long, float, double, char .

Оператор new чаще всего используется для размещения в памяти данных определенных пользователем типов, например, структур:

struct Node { char *Name; int Value; Node *Next }; Node *PNode; //объявляется указатель PNode = new Node; //выделяется память PNode->Name = "Ata"; //присваиваются значения PNode->Value = 1; PNode->Next = NULL;

В качестве имени типа в операции new может быть использован массив :

new ТипМассива

При выделении динамической памяти для массива его размеры должны быть полностью определены. Например:

ptr = new int ;//10 элементов типа int или 40 байт ptr = new int ;//неверно, т.к. не определен размер

Такая операция позволяет выделить в динамической памяти участок для размещения массива соответствующего типа, но не позволяет его инициализировать. В результате выполнения операция new возвратит указатель , значением которого служит адрес первого элемента массива. Например:

int *n = new int;

Операция new выполняет выделение достаточного для размещения величины типа int участка динамической памяти и записывает адрес начала этого участка в переменную n . Память под саму переменную n (размера, достаточного для размещения указателя) выделяется на этапе компиляции.

Динамическое и статическое выделение памяти. Преимущества и недостатки. Выделение памяти для одиночных переменных операторами new и delete . Возможные критические ситуации при выделении памяти. Инициализация при выделении памяти

1. Динамическое и статическое (фиксированное) выделение памяти. Главные различия

Для работы с массивами информации, программы должны выделять память для этих массивов. Для выделения памяти под массивы переменных используются соответствующие операторы, функции и т.п.. В языке программирования C++ выделяют следующие способы выделения памяти:

1. Статическое (фиксированное ) выделение памяти. В этом случае память выделяется только один раз во время компиляции. Размер выделенной памяти есть фиксированным и неизменным до конца выполнения программы. Примером такого выделения может служить объявление массива из 10 целых чисел:

int M; // память для массива выделяется один раз, размер памяти фиксированный

2. Динамическое выделение памяти. В этом случае используется комбинация операторов new и delete . Оператор new выделяет память для переменной (массива) в специальной области памяти, которая называется «куча» (heap). Оператор delete освобождает выделенную память. Каждому оператору new должен соответствовать свой оператор delete .

2. Преимущества и недостатки использования динамического и статического способов выделения памяти

Динамическое выделение памяти по сравнению со статическим выделением памяти дает следующие преимущества:

  • память выделяется по мере необходимости программным путем;
  • нет лишних затрат неиспользованной памяти. Выделяется столько памяти сколько нужно и если нужно;
  • можно выделять память для массивов информации, размер которых заведомо неизвестен. Определение размера массива формируется в процессе выполнения программы;
  • удобно осуществлять перераспределение памяти. Или другими словами, удобно выделять новый фрагмент для одного и того же массива, если нужно выделить дополнительную память или освободить ненужную;
  • при статическом способе выделения памяти трудно перераспределять память для переменной-массива, поскольку она уже выделена фиксировано. В случае динамического способа выделения, это делается просто и удобно.

Преимущества статического способа выделения памяти:

  • статическое (фиксированное) выделение памяти лучше использовать, когда размер массива информации заведомо известен и есть неизменным на протяжении выполнения всей программы;
  • статическое выделение памяти не требует дополнительных операций освобождения с помощью оператора delete . Отсюда вытекает уменьшение ошибок программирования. Каждому оператору new должен соответствовать свой оператор delete ;
  • естественность (натуральность) представления программного кода, который оперирует статическими массивами.

В зависимости от поставленной задачи, программист должен уметь правильно определить, какой способ выделения памяти подходит для той или другой переменной (массива).

3. Как выделить память оператором new для одиночной переменной? Общая форма.

Общая форма выделения памяти для одиночной переменной оператором new имеет следующий вид:

ptrName = new type;
  • ptrName – имя переменной (указателя), которая будет указывать на выделенную память;
  • type – тип переменной. Размер памяти выделяется достаточный для помещения в нее значения переменной данного типа type .
4. Как освободить память, выделенную под одиночную переменную оператором delete ? Общая форма

Если память для переменной выделена оператором new, то после завершения использования переменной, эту память нужно освободить оператором delete . В языке C++ это есть обязательным условием. Если не освободить память, то память останется выделенной (занятой), но использовать ее не сможет ни одна программа. В данном случае произойдет «утечка памяти» (memory leak).

В языках программирования Java, C# освобождать память после выделения не нужно. Этим занимается «сборщик мусора» (garbage collector ).

Общая форма оператора delete для одиночной переменной:

delete ptrName;

где ptrName – имя указателя, для которого была раньше выделена память оператором new . После выполнения оператора delete указатель ptrName указывает на произвольный участок памяти, который не является зарезервированным (выделенным).

5. Примеры выделения (new ) и освобождения (delete ) памяти для указателей базовых типов

В примерах демонстрируется использование операторов new и delete . Примеры имеют упрощенный вид.

Пример 1. Указатель на тип int . Простейший пример

// выделение памяти оператором new int * p; // указатель на int p = new int ; // выделить память для указателя *p = 25; // записать значения в память // использование памяти, выделенной для указателя int d; d = *p; // d = 25 // освободить память, выделенную для указателя - обязательно delete p;

Пример 2. Указатель на тип double

// выделение памяти для указателя на double double * pd = NULL ; pd = new double ; // выделить память if (pd!=NULL ) { *pd = 10.89; // записать значения double d = *pd; // d = 10.89 - использование в программе // освободить память delete pd; }
6. Что такое «утечка памяти» (memory leak )?

«Утечка памяти » – это когда память для переменной выделяется оператором new , а по окончании работы программы она не освобождается оператором delete . В этом случае память в системе остается занятой, хотя потребности в ее использовании уже нет, поскольку программа, которая ее использовала, уже давно завершила свою работу.

«Утечка памяти» есть типичной ошибкой программиста. Если «утечка памяти» повторяется многократно, то возможная ситуация, когда будет «занята» вся доступная память в компьютере. Это приведет к непредсказуемым последствиям работы операционной системы.

7. Каким образом выделить память оператором new с перехватом критической ситуации, при которой память может не выделиться? Исключительная ситуация bad_alloc . Пример

При использовании оператора new возможна ситуация, когда память не выделится. Память может не выделиться в следующих ситуациях:

  • если отсутствует свободная память;
  • размер свободной памяти меньше чем тот, который был задан в операторе new .

В этом случае генерируется исключительная ситуация bad_alloc . Программа может перехватить эту ситуацию и соответствующим образом обработать ее.

Пример. В примере учитывается ситуация, когда память может не выделиться оператором new . В таком случае осуществляется попытка выделить память. Если попытка удачная, то работа программы продолжается. Если попытка завершилась неудачей, то происходит выход из функции с кодом -1.

int main() { // объявить массив указателей на float float * ptrArray; try { // попробовать выделить память для 10 элементов типа float ptrArray = new float ; } catch (bad_alloc ba) { cout << << endl; cout << ba.what() << endl; return -1; // выход из функции } // если все в порядке, то использовать массив for (int i = 0; i < 10; i++) ptrArray[i] = i * i + 3; int d = ptrArray; cout << d << endl; delete ptrArray; // освободить память, выделенную под массив return 0; }
8. Выделение памяти для переменной с одновременной инициализацией. Общая форма. Пример

Оператор выделения памяти new для одиночной переменной допускает одновременную инициализацию значением этой переменной.

В общем, выделение памяти для переменной с одновременной инициализацией имеет вид

ptrName = new type(value )
  • ptrName – имя переменной-указателя, для которой выделяется память;
  • type – тип на который указывает указатель ptrName ;
  • value – значение, которое устанавливается для выделенного участка памяти (значение по указателю).

Пример. Выделение памяти для переменных с одновременной инициализацией. Ниже приводится функция main() для консольного приложения. Продемонстрировано выделение памяти с одновременной инициализацией. Также учитывается ситуация, когда попытка выделить память завершается неудачей (критическая ситуация bad_alloc ).

#include "stdafx.h" #include using namespace std; int main() { // выделение памяти с одновременной инициализацией float * pF; int * pI; char * pC; try { // попробовать выделить память для переменных с одновременной инициализацией pF = new float (3.88); // *pF = 3.88 pI = new int (250); // *pI = 250 pC = new char ("M" ); // *pC = "M" } catch (bad_alloc ba) { cout << "Исключительная ситуация. Память не выделена" << endl; cout << ba.what() << endl; return -1; // выход из функции } // если память выделена, то использование указателей pF, pI, pC float f = *pF; // f = 3.88 int i = *pI; // i = 250; char c; c = *pC; // c = "M" // вывести инициализированные значения cout << "*pF = " << f<< endl; cout << "*pI = " << i << endl; cout << "*pC = " << c << endl; // освободить память, выделенную ранее для указателей delete pF; delete pI; delete pC; return 0; }